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Abstract.  A theory of general intelligence must account for how an intelligent 
agent can map percepts into actions at the level of human performance. We de-
scribe a new approach to this percept-to-action mapping. Our approach is based 
on four ideas: the world exhibits fractal self-similarity at multiple scales, the de-
sign of mind reflects the design of the world, similarity and analogy form the 
core of intelligence, and fractal representations provide a powerful technique 
for perceptual similarity and analogy. We divide our argument into two parts. In 
the first part, we describe a technique of fractal analogies and show how it gives 
human-level performance on an intelligence test called the Odd One Out. In the 
second, we describe how the fractal technique enables the percept-to-action 
mapping in a simple, simulated world. 

1 Introduction 

Russell & Norvig [28] characterize an intelligent agent as a function (f) that maps a 
perceptual history (P*) into an action (A). If we accept f: P* → A as a useful charac-
terization of intelligence, it follows that a theory of general intelligence must account 
for how the intelligent agent maps percepts into actions. Although Russell & Norvig 
do not delve into it, we believe that a theory of general intelligence must also account 
for agent’s performance at the level of human intelligence. In this paper, we present a 
novel approach to addressing the f: P* → A mapping at the level of human intelli-
gence.  
 Our approach is based on four ideas: (1) the world exhibits fractal self-similarity at 
multiple scales [19]; (2) the design of mind at least in part reflects the design of the 
world [12]; (3) similarity and analogy form the core of intelligence [14]; and (4) frac-
tal representations provide a powerful technique for similarity and analogy. The first 
three of these ideas are familiar in theories of nature and intelligence; however, it is 
the fourth idea which is new.  We claim that analogy initiates with an act of being 
reminded, and that fractally representing that triggering percept as well as all prior 
percepts affords unprecedented similarity discovery, and thereby analogy-making.  
 We divide the argument in this paper into two parts. In the first part, we describe 
the general technique of fractal analogies and show how it gives human-level perfor-
mance on an intelligence test called the Odd One Out. In the second, we describe how 
the same fractal technique enables the f: P* → A mapping in a simulated world, in 
which intelligent agents recognize one another and flock together. 
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2 Fractal Analogies and Novelty Detection 

 To deem some apprehended object as novel involves the complex interplay of at least 
two relationships [30-31]: the relationship between the observer and the observed, and 
the relationship between the observed and its context. The relationship between the 
observing agent and the observed object may vary depending upon some act taken by 
the observer.  For example, if one wishes to appreciate an object at a higher level of 
detail, one might move closer to the object, or bring the object closer, resulting in the 
object occupying a larger expanse of the observer’s field of view.  This action modi-
fies the resolution of the object: at differing levels of resolution, fine or coarse details 
may appear, which may then be taken into the consideration of the novelty of the 
object. The observed object also is appreciated with regard to other objects in its envi-
ronment.  Comparing an object with others around it may engage making inferences 
about different orders of relationships. We may begin at a lower order but then pro-
ceed to higher orders if needed. The context also sanctions which aspects, qualities, or 
attitudes of the objects are suitable for comparison.   

Given the importance of perceptual novelty detection, there has been quite a bit of 
work on the topic. Markou & Singh [20-21] review statistical and neural network 
techniques for novelty detection. Neto & Nehmzow [24] illustrate the use of visual 
novelty detection in autonomous robots. Work on spatial novelty and oddity by 
Lovett, Lockwood & Forbus [18] centered on qualitative relationships in visual ma-
trix reasoning problems. They showed that by applying traditional structure-mapping 
techniques [10] to qualitative representations, analogical reasoning may be used to 
address problems of visual oddity; however, they did not show where the representa-
tions come from [15].  

Analogies in a general sense are based on similarity and repetition [14], and so we 
seek to employ a suitable representation, one which affords the capture of these quali-
ties as well as sanctions reasoning over them. Fractals capture self-similarity and 
repetition at multiple scales [19]. Thus, we believe fractal representations to be an 
appropriate choice for addressing some classes of analogy problems. We model the 
relationship between the observer and the observed by starting with fractal representa-
tions encoded at a coarse level of resolution, and then adjusting to the right level of 
resolution for addressing the given problem. We model the relationship between the 
observed and its context by searching for similarity between simpler relationships, 
and then shifting its searches for similarity between higher-order relationships.  In 
each aspect, these adjustments are made automatically by our strategy, by characteriz-
ing the ambiguity of a potential solution.  

2.1 Visual Analogies and Fractal Representations 

Consider the general form of a visual analogy problem as being A : B :: C : D, with 
the symbols being images. Some unknown transformation T can be said to transform 
image A into image B, and likewise, some unknown transformation T′ transforms 
image C into an unknown answer image D. The central analogy in such a visual prob-
lem may then be imagined as requiring that T be analogous to T′; that is, the answer 



 

 

will be whichever image D yields the most analogous transformation. That T and T’ 
are analogous may be construed as meaning that T is in some fashion similar to T’.   

The nature of this similarity may be determined by a number of means, many of 
which might associate visual or geometric features to points in a coordinate space, 
and compute similarity as a distance metric [29]. We adopt Tversky’s interpretation of 
similarity as a feature-matching process, and seek to derive from each fractal repre-
sentations a set of features for use in this matching process. Thus, we define the most 
analogous transform T′ as that which shares the largest number of matching fractal 
features with the original transform T. 

The mathematical derivation of fractal image representation expressly depends up-
on the notion of real world images [2]. A key observation is that all naturally occur-
ring images appear to have similar, repeating patterns. Another observation is that no 
matter how closely one examines the real world, one may find instances of similar 
structures and repeating patterns. These observations suggest that images may be 
described in terms that capture the observed similarity and repetition alone, without 
regard to shape or traditional graphical elements.    

 Computationally, determining the fractal representation of an image requires the 
use of the fractal encoding algorithm. We refer the interested reader to our earlier 
work for the details of this algorithm [16, 22]. 

Table 1.  Elements of a Fractal Code 

Features from Fractals. The fractal representation of an image is an unordered set of 
fractal codes, which compactly describe the geometric alteration and colorization of 
fragments of a source image that will collage to form a destination image. Each fractal 
code yields a small set of features, formed by constructing subsets of its underlying 
tuple. These features thus afford position-, affine-, and colorimetric-agnosticism, as 
well as specificity. 
Mutuality. The analogical relationship between two images may be seen as mutual; 
that is, image A is to image B as image B is to image A.  However, the fractal repre-
sentation is decidedly one-way (e.g. from A to B).  To capture the bidirectional, mu-
tual nature of the analogy between source and destination, we introduce the notion of 
a mutual fractal representation. Let us label the representation of the fractal transfor-
mation from image A to image B as TAB.  Correspondingly, we would label the in-
verse representation as TBA. We shall define the mutual analogical relationship be-
tween A and B by the symbol MAB, given by equation 1: 

 MAB = TAB ∪ TBA (1) 

Spatial Photometric 
sx, sy Source fragment origin C Colorimetric contraction 
dx, dy Destination fragment origin Op Colorimetric operation 

T Orthonormal transformation  S Size/shape of the region 

 



 

 

By exploiting the set-theoretic nature of fractal representations TAB and TBA to express 
MAB as a union, we afford the mutual analogical representation the complete expres-
sivity and utility of the fractal representation. Further, the mutual fractal representa-
tion of the pairings may be extended to determine mutual fractal representations of 
triplets (equation 2) or quadruplets (equation 3) of images: 

 Mijk = Mij ∪ Mjk ∪ Mik    (2) 

 Mijkl = Mijk ∪ Mikl ∪ Mjkl ∪ Mijl  (3) 

Therefore, in a mutual fractal representation, we have the apparatus necessary for 
reasoning analogically about the relationships between images, dependent upon only 
features which describe the mutual visual similarity present in those images. 

Fig. 1. Representative Odd One Out problems. 

2.2 Odd One Out Problems 

General one-one-out tasks can be presented with many kinds of stimuli, from words, 
colors, and images, to sets of objects.  Minimal versions of these tasks are presented 
with three items, from which the “odd” one must be selected.  Three item one-one-out 
tasks, in contrast to two-item response tasks, evaluate a participant’s ability to com-
pare relationships among stimuli, as opposed to just comparing stimuli features.  It 
has been shown that these relationship-comparison tasks track general IQ measure 
more closely than do two-item tasks, and this tracking of IQ increases with the num-
ber of relationships to be considered [9]. We have chosen the Odd One Out test de-
veloped by Hampshire and colleagues at Cambridge Brain Sciences [11], which con-
sists of matrix reasoning problems of varying levels of difficulty, in which the task is 
to decide which of the figures in the matrix does not belong.  
 
Finding the Odd One Out, Fractally. Our technique for tackling the Odd One Out 
problems consists of three phases: segmentation, representation, and reasoning. First, 
we segment the problem image into nine subimages, I1 through I9.  In the present 
implementation, the problems are given as 478x405 RGB-pixel JPEG images, with 
the subimages arrayed in a 3x3 matrix.  At this resolution, each subimage fits well 
within a 96x96 pixel image. 

Given the nine subimages, we group subimages into pairs, such that each subimage 
is paired once with the other eight subimages, forming 36 distinct pairings.  We then 
calculate the mutual fractal representation Mij for each pair of subimages Ii and Ij. The 



 

 

block partitioning used initially is identical to the largest possible block size, but sub-
sequent recalculation of Mij may be necessary using finer block partitioning. To de-
termine the Odd One Out solely from the mutual fractal representations, we start by 
considering groupings of representations, beginning with pairings, and, if necessary, 
advance to consider other groupings.  
 
Reconciling Multiple Analogical Relationships. For a chosen set of groupings G, 
we must determine how similar each member is to each of its fellow members. We 
first derive the features present in each member, as described above, and then calcu-
late a measure of similarity as a comparison of the number of fractal features shared 
between each pair member [29].  

We use the ratio model of similarity as described in [29], wherein the measure of 
similarity S between two representations A and B is calculated: 

 S(A,B) = f(A ∩ B) / [f(A ∩ B) + αf(A-B) + βf(B-A)]  (4) 

where f(X) is the number of features in the set X. To favor features from either image 
equally, we have chosen to set α = β = 1 (the Jaccard similarity). 
 
Relationship Space. As we perform this calculation for each pair A and B taken from 
the grouping G, we determine a set of similarity values for each member of G. We 
consider the similarity of each analogical relationship as a value upon an axis in a 
large “relationship space” whose dimensionality is determined by the size of the 
grouping. To arrive at a scalar similarity score for each member of the group G, we 
construct a vector in this multidimensional relationship space and determine its 
length, using the Euclidean distance formula. The longer the vector, the more similar 
two members are.  As the Odd One Out problem seeks to determine, literally, “the 
odd one out,” we seek to find the shortest vector, as an indicator of dissimilarity. 
 
Distribution of Similarity. From the similarity score for a member of G, we determine 
subimage scoring by distributing the similarity value equally among the participating 
subimages.  For each of the nine subimages, a score is generated which is proportion-
al to its participation in the grouping.  If a subimage is one of the two images in a 
pairing, as an example, then the subimage’s similarity score receives one half of the 
pairing’s calculated similarity score. Once all similarity scores of the grouping have 
been distributed to the subimages, the similarity score for each subimage is known. 
Although identifying which one among the subimages has the lowest similarity score, 
this may not yet sufficient for solving the problem, as ambiguity may be present. 
 
Ambiguity. Similarity scores may vary widely. If the score for any subimage is un-
ambiguously smaller than that of any other subimage, then the subimage is deemed 
“the odd one out.”  By unambiguous, we mean that there is no more than one score 
which is less than some ε, which we may vary as a tuning mechanism for the algo-
rithm, and which we see as a useful yet coarse approximation of the boundary be-
tween the similar and the dissimilar in feature space.  In practice, we calculate the 
deviation of each similarity measure from the average of all such measures, and use 
confidence intervals as a means for indicating ambiguity.  



 

 

Refinement Strategy. However, if the scoring is inconclusive, then there are two 
readily available mechanisms at the algorithm’s disposal:  to modify the grouping 
such that larger sets of subimages are considered simultaneously (from pairs to tri-
plets, or from triplets to quadruplets), or to recalculate the fractal representations us-
ing a finer partitioning.  In our present implementation, we attempt bumping up the 
elements considered simultaneously as a first measure.  If after reaching a grouping 
based upon quadruplets the scoring remains inconclusive, then we consider that the 
initial representation level was too coarse, and rerun the algorithm using ever finer 
partitions for the mutual fractal representation.  If, after altering our considerations of 
groupings and examining the images at the finest level of resolution the scores prove 
inconclusive, the algorithm selects the subimage with the lowest score. 

2.3 Analysis and Discussion 

We have run our algorithm against 2,976 problems of the Odd One Out.  These prob-
lems span a range of difficulty from the very easiest (level one) up to the most diffi-
cult (level 20). The performance ranged from nearly perfect on the easiest levels, to 
70% correct at the middle difficulties, with a rapid falloff to 20% at the most difficult.  
For each problem, the choice of partitioning resolution was made automatically. 

We note that most errors occur when the algorithm stops at quite high levels of 
partitioning.  We interpret this as evidence that there exist levels-of-detail which are 
too gross to allow for certainty in reasoning. Indeed, the data upon which decisions 
are made at these levels are three orders of magnitude less than that which the finest 
partitioning affords.  We find an opportunity for a refinement of the algorithm to as-
sess its certainty based upon a naturally emergent artifact of the representation. 

The errors that occurred at the finest level of partitioning are caused not due to the 
algorithm reaching an incorrect unambiguous answer but rather that the algorithm was 
unable to reach a sufficiently convincing or unambiguous answer.  As we noted, these 
results are based upon calculations involving considering shifts in partitioning only, 
using pair wise comparisons of subimages. There appear to be Odd One Out problems 
for which considering pairs of subimages shall prove inconclusive at all available 
levels of detail.  It is this set of problems which we believe implies that a shift in 
grouping (from pairs to triplets, or from triplets to quadruplets) must be undertaken to 
reach an unambiguous answer. 

3 Fractal Perception and Action 

In order to demonstrate that fractal analogies may form the basis of a theory of gen-
eral intelligence, we need to describe how they can address the f: P* → A mapping. 
To illustrate this we will construct an intelligent agent that lives in a simple simulated 
world similar to Reynolds’s [26-27] boid worlds.  



 

 

3.1 The Boid World 

Schools of fish, murmurations of starlings, and stampedes of wildebeest are at once 
stunning and remarkable in appearance. The collection of agents, taken together, ap-
pear to be acting as if they were under some organized control.  

Reynolds' boids are agents with an internal state which describes their current 
heading and an awareness of those agents to whom they should. They also have a 
minimum set of intrinsic behaviors that drive them to coordinate their actions with 
those flock mates: stay close together, don’t collide, and mimic the motion of others. 

Fig. 2. Flocking Behaviors: Cohesion, Separation, and Alignment 

Perception. A flock in nature may be composed of many thousands of individuals. It 
would seem an improbable computational load to place upon each agent within the 
flock the attempt to ascertain aspects of every member of the flock prior to making 
modifications to its own behavior. Some restriction of which individuals to consider 
must occur. Reynolds characterizes this as considering each agent to have a local 
perception. In computer simulations of flocks, the local perception each agent has of 
the world typically is provided to the agent by a godlike view of the entire environ-
ment, and a superimposed restriction of individuals by culling those deemed too dis-
tant to consider. This distance is usually referred to as a range of influence. 

3.2 The Froid (Fractal Boid) World 

For explorations of visual reasoning, affording agents with models of perception 
based on familiarity and novelty and observing those agents as flocks seems ideal. In 
our system, we endow our agents with a visual reasoning apparatus with the ability to 
receive the environment by localized observation only, and to perceive this received 
world via manipulations of fractal representations.  
 
Froids versus Boids. Our agents, froids, sense and then classify their environment, 
whereas boids are told explicitly about their surrounds. Both boids and froids manifest 
the same behaviors, and thus participate in flocking with their mates, but only froids 
perceive and reason about their environment prior to enacting those behaviors. We 
establish a visual reasoning pipeline for a froid, from the reception of the world, 
through perceiving individuals and objects in the world, to reasoning about those 
perceptions, and finally, to enacting some course of action. 

We made two simplifying architectural decisions for our experiment. First, the per-
ception stage occurs in a serial fashion with the behavior decision stage, since the 



 

 

world of the simulation will not have changed until all the agents have moved them-
selves. Second, the perception stage would act only upon newly arriving stimuli, and 
not be influenced by prior decisions. We make these simplifications so that we may 
better compare the effect of perception on the subsequent behavior, without having 
our analysis take into account any perceptual hysteresis or other internal state. 

Fig. 3. Visual field to retina mapping, seeing via ray casting, and retinal objects 

How a Froid Sees. We image a froid as having a single “eye” with a broad field of 
view. The froid’s eye consists of a simulated retina, an arrangement of sensors. A 
froid sees its environment by receiving photometric stimulation upon this retina. The 
light entering each of these sensors is combined to form a visual field, as shown in 
figure 3-left. In our simulation, we use ray-casting to send a ray out through each of 
the sensors into the simulated world, and note whether that ray intersects anything. 
We illustrate this in Figure 3-center. 

We interpret the “light” falling upon the sensor is a function of the distance of the 
intersected object from the froid, where objects which are distant are fainter than 
close objects. Figure 3-right shows an example of how objects within the froid’s im-
mediate environment may be mapped by this visual system onto its retina. 
 
Fractal Perception. The photometric values arriving via the froid’s retina next are 
interpreted by the froid’s perception stage. For our present implementation we restrict 
the intentionality of the perception to only those tasks which will drive the flocking 
behavior. Accordingly, the primary task of the perception system is to determine flock 
mates. 

This, however, raises an immediate question: what does a flock mate look like to a 
froid? Our froids are rendered into the simulated environment as chevrons whose 
orientation, color and physical size may vary. The visual environment, as transduced 
onto the retinal image, will show only an arranged set of values, roughly correspond-
ing to visual distance to whatever object happened to intersect the ray from the sensor. 
 
Filial Imprinting. There are many possible visual arrangements between a froid and 
a prototypical “other” in its environment. We chose to restrict our prototypes to six, 
four corresponding to points on the compass (north, south, east and west), and two 
corresponding to specific situations which would seem useful for behavior selection 
(close and empty). We refer to these as filial imprints, and they, along with their cor-
responding retinal impressions, are encoded into a fractal representation, and placed, 
indexed by derived fractal features, into the froid’s memory system. 



 

 

 
Finding the familiar by visual analogy. The arriving retinal image is an otherwise 
undifferentiated collection of photometric information, with each value corresponding 
to a particular direction and distance. From this retinal image, flock mates that might 
be within the visual range of the froid may be identified. 

We begin by segmenting the retinal image into varying sets (collections of adjacent 
sensors), and then encoding each of these segments into fractal representations. We 
note that no attempt is made to interpret the retina image for edges or other boundary 
conditions: the segments are treated merely as they are found.  

Algorithm 1. Selecting the fractal familiar 

If a segment corresponds to an imprinted prototype then we may make several in-
ferences. The first is that an individual flock mate exists in that direction of view, 
which corresponds to the segment’s retinal constituents. Secondly, we may infer that 
the flock mate lies at a distance which corresponds to a function of the faintness of the 
photometric readings of the retinal image. By systematically examining each segment 
of the retina, the froid’s flock mates may be inferred by visual analogy. 

3.3 The Three Laws for Froids 

Once the flock mates have been discovered, the Reynolds rules for flocking may be 
invoked. Since the perception system has inferred the existence of a flock mate at a 
particular distance and direction, the separation and cohesion rules may be enacted 
directly. To align with a flock mate, the froid must infer the heading from the visual 
classification of the mate. This classification depends explicitly upon which of the 
filial prototypes has been selected as most representative of the retinal segment. We 
identified five rules of heading inference. Once the heading is inferred, the alignment 
rule of Reynolds may be used to adjust the motion of the froid. 

3.4 Froids and Boids 

To test our belief that a froid could behave as naturally as its boid counterparts, we 
created a traditional Reynolds boid system. We first placed into the environment sev-

To determine the prototype P’ which is most analogous to the retinal seg-
ment R from a set of fractal prototypes P ≔ { P1, P2, … Pn }: 
 
F ← Fractal( R, R ) 
Set M ← 0 and P’ ← unknown 
For each prototype Pi ∈ P: 
· Calculate the similarity of F to Pi : S ← Sim( F, Pi ) 
· If S > M, then M ← S  and  P’ ← Pi 

 
P’ is therefore that prototype Pi ∈ P which corresponds to the maximal 
similarity S, and is deemed the most analogous to retinal segment R. 



 

 

eral thousand standard boids, and observed that their aggregate motion was as 
expected: a realistic simulation of natural flocking behavior. 

Fig. 4. A froid flocks with boids, and a closeup of the froid perceiving its environment 

We then introduced one froid into the environment with the boids. Figure 4 shows 
a view of this simulation, with traditional boids in green, and the froid in gold. We 
observed that the froid behaved in the same manner as those boids whose identifica-
tion of flock mates was given in the traditional oracle manner.  

We note that, unlike the boids, the froids appeared to suffer from uncertainty (man-
ifested by a stuttering motion) when in the proximity of a large number of other boids. 
We surmised that this is due to the inability of the segmentation system using within 
the retina to accommodate or otherwise classify large amounts of overlapping or con-
founding visual data. Another possibility concerns the enaction itself. Let us suppose 
that two action vectors arising due to two received perceptual signals almost exactly 
cancel each other. In this case, small fluctuations in the perceptual signal can cause a 
significant change in the action vector, which may result in stuttering. 

4 Conclusion 

In earlier work [5-6], we showed that visual knowledge and reasoning alone could 
address some classes of analogy problems that had been assumed to require causal 
knowledge and reasoning. We also showed how visual analogies could account for 
several aspects of creative problem solving in scientific discovery [8] and engineering 
design [7]. However, this work still used propositional representations, while the con-
tent of knowledge was visuospatial. In [16-17], we showed how visual knowledge 
represented iconically can address analogy problems on the Raven’s Progressive Ma-
trices test of intelligence. Previously, the visual analogy problems on the Raven’s test 
had been assumed to require propositional representations. The Raven’s test also 
formed the context of our first development of fractal representations for addressing 
visual analogy problems [22]. The fractal method on the Raven’s test performs about 
as well as typically human teenager. Hertzmann et al  [13] have used a different frac-
tal technique for comparing texture in two images. 
 In this paper, first we showed that an improved fractal technique can address visual 
analogy problems on the Odd One Out test of intelligence at the level of most adult 
humans. Further, the fractal technique imitates two important features of human per-



 

 

formance: starting with low-level relationships and moving to higher relationships if 
and as needed, and automatic adjustment of the level of resolution to resolve ambigui-
ties. We posit that fractal representations are knowledge representations in the sense 
of Biederman [3] in that they encode the relationship between non-accidental percep-
tual constructs within an image.  We posit further that fractals are knowledge repre-
sentations in the deep sense of Davis, Shrobe & Szolovits [4] in which representation 
and reasoning are closely intertwined. 
 Then, in this paper we that showed the fractal technique for visual analogies can be 
used for perception. We demonstrated that froids (fractal-based boids) can use the 
fractal technique for mapping percepts into actions which manifest flocking behavior. 
The froids used a simple architecture called "reactive control" in robotics [1] and 
"situated action" in cognitive science [23], directly mapping percepts into actions. 
 While the use of fractal representations is central to our technique, the emphasis 
upon visual recall in our solution afforded by features derived from those representa-
tions is also important. There is evidence that certain species have innate or rapidly 
develop through acclimation visual prototypes which allow young members to accu-
rately identify their parents [25]. We hold that placing imprints into memory, indexed 
via fractal features, affords a new and robust method of discovering image similarity, 
and that images, encoded and represented in terms of themselves, may be indexed and 
retrieved without regard to shape, geometry, or symbol.  
 Our goal is to develop a Fractal Theory of General Intelligence. We believe that in 
this paper we have taken two important steps in that long journey: we have demon-
strated that (1) our fractal technique can address visual analogy problems on intelli-
gence tests on par with human performance, and (2) our fractal technique enables 
real-time percept-to-action mapping capable of imitating flocking behavior, at least in 
a simulated world.  
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